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Abstract

As larger ATM networks are being installed, the performance issues relating to Pri-
vate Network to Network Interface(PNNI) protocol, which provides link state based
dynamic routing capability in an ATM network have assumed significance. The fac-
tors influencing the selection of topology of a network, the number of nodes in the
network which share topology information(Peer Group size), the call setup times, link
utilization, call rejection rates need to be evaluated. A comprehensive simulation tool
for evaluating PNNI protocol is developed. The simulation tool is developed on a soft-
ware architecture which has all the modules which are required to control an ATM
switch, enabling its simulations closer to real network characteristics. Connection re-
quests are generated using a comprehensive call generating tool. The factors influenc-
ing the peer group size and performance of a single peer group PNNI are addressed
taking the topology convergence times, call setup times, bandwidth requirement of the
PNNI topology messages, topology messages per call, source node failed calls, inter-
mediate node failed calls and route computation times as metrics. The performance of
the simulator to run sensible simulations is addressed.
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Chapter 1

Introduction

The Private Network to Network protocol(PNNI) is a comprehensive routing and sig-

naling protocol architecture in a private Asynchronous Transfer Mode Network(ATM).

It helps in exchanging the routing related topology information between ATM nodes.

It also helps in selecting a source route to the destination when a call connection is

requested. PNNI uses the topology database it developed through flooding, to gener-

ate a source route to the destination required. The PNNI protocol is a very complex

protocol to implement and it is even more difficult to predict its performance. The

network behavior becomes unpredictable when controlling a big private network of

ATM nodes(also known as switches), because connection requests will be coming from

different host systems in the network, in unknown arrival patterns, with unexpected

bandwidth requirements, and with different call connection durations. The PNNI pro-

tocol also contributes to this unpredictability by offering a wide range of parameters

that may be manipulated.

One of the important issues of PNNI performance is its scalability. The PNNI proto-

col receives knowledge of the changing network through topology updates generated

whenever there is a significant change in the topology information. These topology

messages are broadcast to all the nodes in a network. In an expanding network, the

link delays, the flooding delays due to redundancy, and the node processing delays

impose a considerable delay before the information reaches all the intended network

nodes. This could cause wrongly rejected calls due to false belief in lack of band-
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width in the network as well as wrongly accepted calls which will only be rejected later.

Hence when the network service providers invest in installing an expensive ATM net-

work, they seek to know about the performance of their network. Before deployment,

it is of paramount importance to design a network for future extendibility. Testing a

network’s performance is a complex evaluation process as it is dependent on a number

of parameters. To list some of them:

� the network topology.

� the connectivity density between the nodes.

� link bandwidth and link delays.

� call arrival rates.

� the call bandwidth requirements.

� the parameters of the PNNI protocol involved such as the flooding significance

and the minimum threshold parameters for the topology information flooding.

� the switch port packet queue size and related packet losses,

� the difference in the relative processing capabilities of the nodes,

� the different routing policies that are used.

The list could be longer. This produces an unbounded problem which is beyond the

reach of any mathematical solution. But nevertheless it is essential to have some type

of performance prediction system, which could enable us to study the performance of

the network.

The options to test the performance could be that the network providers have a

test network of ATM nodes for testing purposes alone. But though such networks ex-

ist, they are only used for advanced network testing such as interoperability testing

between two switch vendor’s switches and a few basic sanity tests, and not for wide

ranging performance evaluation test suites. Such test networks are also relatively small

compared to an actual deployed network. These networks cannot be used for wide
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ranging performance tests because the setting up of such networks for the required

experimentation is very time consuming, difficult, very expensive, and multiple such

networks for simultaneous performance experimentation is not affordable. Succinctly,

using real networks for all tests is not feasible, and since a great deal of effort is in-

volved to get simplest of performance measures, this approach is not worthwhile.

The best alternative we find in such cases is either to simulate such networks or

to emulate them in a distributed environment. While emulations scale to very large

networks, simulations are very efficient for medium to large scale networks. While

emulation is under advanced stages of development, simulation is used in this thesis

for performance evaluation. Simulation is a software process which runs on a single

workstation. It is configurable to simulate a required network with various network

entities. It is also possible to specify the collection of various performance related data

at different times during the experimentation. The simulations and emulations save

time by offering simultaneous experimentation and are economically feasible.

The simulation is supported on the Bellcore’s Q.port software. This software in-

cludes the UNI signaling messages, the data link Qsaal layer. GSMP off-board signal-

ing agent capability is also added in the software which can control an ATM switch.

Emulation support is also added to Q.port. The simulation model is built on this soft-

ware with all necessary protocol stacks in the real ATM switch being used in the sim-

ulation to make it more real and accurate. The off-board signaling agent fabric, the

emulation fabric, and the simulation model have about 98 % of their software in com-

mon.

The motivation to evaluate the performance of the PNNI protocol has led to devel-

oping a PNNI simulator as described in this thesis. The initiative to develop a simu-

lator was taken up as there were no simulator tools available for PNNI performance

testing which we required. At the time of developing this thesis, it was decided to use

Naval Research Laboratory’s(NRL) Proust simulator, but the Proust simulator did not

support the call generation capabilities and it was primitive in some respects. Nortel

(Northern Telecom) is working on a simulation tool which is in a development stage

and not much is known about its capabilities. So simulator development was taken up
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which could help us test the performance of PNNI and extend our experimentation by

expanding the tool’s capability in a future perspective.

The simulator supports a single peer group version of the ATM forum PNNI spec-

ification. It is designed to an architecture which is convenient to be used, and which

supports configuring and monitoring all the possible PNNI parameters of interest for

experimentation. The Q.port software from Bellcore is used for the purpose of de-

veloping the simulator. Q.port’s real time scheduling system is modified to support

the virtual time oriented simulations. The Q.port software is upgraded to support an

additional PNNI element, the Designated Transition List(DTL). The DTL contains the

source node generated list of nodal hops to be traversed to reach the destination of the

requested call. NRL’s Proust PNNI architecture is interfaced in Q.port for providing

the PNNI routing subsystem module. The most important finite state machine (FSM)

in the PNNI protocol, the Node Peer FSM (NPFSM), the associated topology database

interface, the decoding and encoding of the topology messages are developed for NRL

by us which is reciprocated by the NRL in letting us use its software for the simulator.

The NPFSM exchanges the topology information between the nodes and helps keep a

database of all the topology information in each node. It interacts with the database

to either seek topology information for broadcasting to other nodes or to insert new

topology elements, it obtained from other nodes.

The simulator provides convenient usage of the tool by supporting a user input

script language, which specifies

� The duration of the simulation.

� The network size in terms of the total number of nodes and links. Generic node

characteristics and the individual node characteristics. Node characteristics in-

clude the routing policies, the PNNI protocol timer values, the proportional mul-

tiplier and minimum threshold values for effecting the significance of topology

information change which leads to its flooding, and the number of ports.

� The connectivity between nodes, link bandwidth, queue size, link delays, and

queuing delays.
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� The generic and individual host characteristics, the different call arrival and du-

ration distributions, prominently, uniform, Poisson, and periodic distributions.

Multiple traffic sources with different destinations, bandwidth requirements, QoS

requirements, and total number of calls to be attempted.

The user input script is designed in a manner to help users specify the minimum re-

quired parameters to run an experiment.

The tool supports the instrumentation of the following performance evaluation pa-

rameters:

� Link utilization.

� Call setup times.

� Initial PNNI topology convergence time.

� Call failure causes.

� The number of PNNI topology messages sent.

� The bandwidth consumed by PNNI messages.

� Call failures at the source node itself due to the knowledge of unavailability of

network bandwidth.

� Call failures due to non availability of bandwidth in an intermediate link.

� Average hop length for each calls.

� Routing algorithm computation time.

The rest of this report is structured in the following manner. Chapter 2 explains the

features of the PNNI protocol whose performance is studied under this thesis. Chapter

3 discusses the implementation aspects involved in the simulator. Chapter 4 explains

the PNNI single peer group experiments conducted and the analysis of the perfor-

mance obtained. The performance of the simulation tool regarding bigger network

simulation is also discussed. Chapter 5 details the conclusions from the results and
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things learned from the thesis. It also explains the future enhanment of the simulator

capabilities, providing the multiple peer group support and the specific performance

issues of interest.
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Chapter 2

Related Work

The Private Network to Network Interface protocol(PNNI) provides a scalable, dy-

namic routing architecture to support the ATM connection setup requests. In this

chapter the basic ATM signaling connection setup sequences will be explained first.

This will be followed with explanations on PNNI’s specific features, hierarchical archi-

tecture, routing, and signaling information elements. Finally, the currently available

research and commercial tools which support PNNI signaling will be presented.

2.1 ATM Connection Setup Sequence

SWITCH

SETUP

CALL_PROCEEDING
SETUP

CONNECT

CONNECT_ACK
CONNECT

CONNECT_ACK

AND DATA TRANSFERCONNECTION UP  

CALLING HOST CALLED HOST

Figure 2.1: ATM Connection Setup Message Sequence

The flow of the ATM signaling sequences is illustrated in Figure 2.1. The calling
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host sends the setup message to the switch requesting a connection to the called host.

The switch finds the route to the called host and forwards the setup message to the

selected port connected to the called host. The called host receives the setup message

and on deciding to accept the connection, sends the connect message to the switch.

The switch receives the connect message and sends the connect ack message to the

destination host which accepts it and prepares for data transfer. The switch sends a

connect message to the calling host. The calling host receives the connect message

and sends the connect ack message to the switch which accepts it. The connection is

established. The calling and the called hosts exchange data.

2.2 PNNI Features

It is envisioned that ATM will grow and evolve into large networks consisting of a large

number of switches connected by high-speed links. Many thousands of (Switched

Virtual Circuit) SVC requests will be submitted to the network and the network will be

expected to forward each request to the right destination, establish a path from calling

to the called host, allocate resources and guarantee QoS. It will be a challenging task

selecting the right path, one that optimizes network resources and guarantees QoS. The

network itself may be made up of a mixture of ATM switches from different vendors.

Different switches could set their own policies and procedures in the switch. PNNI is

designed to support these challenging needs of a dynamic ATM network. Its features

include:

� Scalability: It supports both small and very large networks of ATM switches.

� Simple to install and configure: As soon as the switches are connected, they ex-

change topology information and are able to route SVC requests with minimal

configuration.

� Dynamic routing mechanism: PNNI supports dynamic routing of SVC requests

through the network. In larger networks PNNI provides scalable hierarchical

routing and support for multiple routing metrics and attributes. The best path
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that will meet QoS objectives in the SVC request is computed and then the SVC

request forwarded along that path. The routing is also responsive to changes in

resource availability.

� Source or transit policies support: PNNI enables both source or transit policies

to be administered. Different switch domains may have different policies based

on security, usage, traffic types and other vendor specific issues.

� Multi vendor: PNNI supports a network of multi vendor switches and allows in-

teroperability between them. The individual switches of different vendors could

perform some specific functions such as route computation and Connection Ad-

mission Control(CAC) and others which suit their policy.

� Interoperability : PNNI supports interoperability with external routing domains,

like Internet Protocol(IP) and others, not necessarily using PNNI. In Integrated

PNNI the ATM switches exchange topology information with the IP routers to

maintain routing database.

2.3 PNNI Topology

PNNI topology constitutes the PNNI routing hierarchy. These are terms associated

with a PNNI topology. Please refer to Figure 2.2 along with explanation of the terms

when required.

� Peer Group (PG): A peer group is a collection of nodes that shares the topol-

ogy information generated by each node through topology information flooding.

Members of a peer group discover their neighbors using a hello protocol. Phys-

ical peer groups consist of physical nodes. Logical peer groups are peer groups

consisting of logical group nodes( which represent a low level peer group at the

next higher level of hierarchy).

� Peer Group Identifier : Members of the same peer group are identified by a com-

mon peer group identifier. The peer group identifier consists of 14 bytes. The
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PG1 PG2

BN

PGL PGL

BN
Level 1

Level 1

Level 2

LGN1 LGN2
Logical Link

Parent  Peer Group

Outside Link.

TopoLogy
Summarization

PTSEs

Figure 2.2: PNNI hierarchical architecture

most significant byte is a level indicator and specifies the bit mask. The next 13

bytes are derived from the 13 most significant bytes of the ATM address of the

node in the peer group.

� Logical Group Node(LGN) : It is a node which represents peer group of the nodes

in the next higher level.

� Parent Peer Group : A peer group which constitutes a LGN of a lower level peer

group in the next higher level.

� Peer Group Leader(PGL): Within a peer group, a node is elected to represent this

peer group in the next higher level. PGL summarizes the peer group information

to the next level. It also passes higher level information obtained from the parent

peer group to it’s peer nodes.

� Hello Protocol: This is a standard link state procedure used by neighbor nodes

to the discover the existence and identity of each other.
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� PNNI Topology State Element(PTSE): This unit of information is used by nodes

to build and synchronize a topology database within the same peer group. PT-

SEs are reliably flooded between nodes in a peer group and downward from

an LGN into the peer group it represents. PTSEs contain topology information

about the links and nodes in the peer group. A group of PTSEs are carried in

PNNI topology state packets(PTSP). PTSPs are sent at regular intervals or are

sent if an important change in topology occurs.

� Logical link: A logical link is a connection between 2 logical nodes. A logical link

aggregates a group of links between the peer groups they represent at the lower

level.

� Border Nodes (BN): A border node is a node in a peer group connecting to a node

of another peer group. This is found by matching different peer group identifiers

during hello protocol exchange. The link connecting border nodes is called the

outside link.

� Uplinks : An uplink is a topology information advertised from a border node to

a higher level LGN. The existence of the uplink is derived from an exchange of

hello packets between the border nodes. These exchanges determine the higher

hierarchical level where the two peer groups have ancestors in a common peer

group. They advertise the the common level along with the address of the peer

nodes in the common level in the uplinks information. These uplinks are flooded

all the way up the hierarchy till they reach LGNs in the common higher level

peer group. The LGNs which are neighbors try to establish logical link by using

the address of the peer node specified in the uplink information.

� Routing Control Channel(RCC): The VPI =0, VCI = 18 which is reserved as the

VC used to exchange PNNI topology information between physical nodes is

called the PNNI RCC.

� Topology aggregation: This is the process of summarizing information at one

peer group level to advertise into the next higher level peer group. Topology
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aggregation is performed by PGLs. Multiple links are aggregated into one link

and a peer group of nodes is aggregated into one node LGN at the next higher

level as explained earlier.

2.4 PNNI Routing

PNNI routing is used to distribute information about the topology of the ATM net-

work among switches and groups of switches. This information is used by the switch

connected to the calling host to compute a route to the called host that satisfies QoS

requirements. PNNI supports a hierarchical routing structure that allows it to scale

to large networks. PNNI makes use of several techniques that have been previously

implemented in other inter-networking protocols. These techniques are:

� Link-state routing.

� Hierarchical routing.

� Source routing.

One choice for the routing data structure was the distance vector algorithm which

is used in routing protocols such as Routing Information Protocol(RIP). This was dropped

at the ATM FORUM because it is unscalable in larger networks and prone to routing

loops. The other choice was link-state routing. This was chosen as it is scalable, con-

verges quickly, generates less overhead traffic, and is extensible. Extensible means that

information in addition to the status of links can be exchanged between nodes and in-

corporated into the topology database. This additional information could be topology

QoS metrics and attributes. In link state routing, each switch exchanges updates with

its neighbor switches on the state of links, state of resources on the switches and each

other’s identity. In each node this information is used to build the topology database of

the entire network. The topology database is used while finding the destination routes.

The second technique PNNI uses for routing is hierarchical routing. In the hier-

archical routing structure, the topology and addressing information about a group of

nodes is summarized and presented as a single node abstraction in the next level up in
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the hierarchy. This serves the purpose of limiting the amount of information about a

group of nodes that is advertised. The overall reduction in traffic due to this abstrac-

tion can be massive. This abstraction process is called topology aggregation. Though

the degree of accuracy could be affected due to change in topology, it is compensated

by the scalability in a big network.

The third PNNI routing technique is source routing. In source routing the node

connected to the calling host computes the entire path to the destination. Since the

QoS metrics of all the links are advertised in a PG, each node would be able to compute

the entire path to the destination. The intermediate nodes through the destination just

perform a CAC and forward the message to the next hop. The source routing avoids

routing loops which can not be permitted in a SVC setup where minimal setup time is

desired.

2.5 PNNI Metrics and Attributes

PNNI is a topology state protocol. Topology state parameters exchanged among net-

work nodes are classified as metrics and attributes. A metric is a parameter whose

value must be combined for all links and nodes in the SVC request path to determine

if the path is acceptable. An attribute is a parameter that is considered individually

at a switch to determine if a path is an acceptable candidate for an SVC request. The

following are the metrics supported by PNNI:

� Maximum Cell Transfer Delay(CTD): Maximum delay through all the links in

path. It must be less than or equal to the requested delay.

� Cell Delay Variation(CDV): Cell delay Variation is the variation in delay at each

of the links than the fixed link delay to transmit a packet. CDV is relevant for

CBR and VBR-rt traffic.

� Administrative Weight(AW): It is the Link or nodal-state parameter set by ad-

ministrator to indicate a preference. This is a vendor specific parameter. It could

be link distance for example.
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The following are the attributes in PNNI:

� Maximum Cell Rate(MCR): Describes the maximum link or node capacity.

� Available Cell Rate(ACR): Measure of effective available bandwidth on the link.

� Cell Loss Ratio(CLR) : It is the ratio of the dropped cells to the transmitted cells.

Describes the expected CLR at a node or link for Cell Loss Priority (CLP)=0,1

traffic.

� Branching Flag : Used to indicate if a node can branch point-to-multi point traffic.

� Restricted Transit Flag: Nodal-state parameter that indicates whether a node

supports transit traffic or not. The transit traffic is the traffic which passes through

an intermediate node in a connection. If a node does not want to act as an inter-

mediate node for a SVC connection, it will set this flag. In this case it will accept

only the connections which terminate at a called host connected to it.

2.6 PNNI Signaling

The signaling component of PNNI is used to forward the SVC request through the net-

work of switches until it reaches its destination. It is based on UNI 4.0 signaling but

has been enhanced with several extensions specific to the PNNI environment. Addi-

tionally, PNNI uses two other techniques, designated transit lists (DTLs) and crank

back with alternate routing to successfully complete the SVC request and connection

setup.

2.6.1 Designated Transit Lists

PNNI uses source routing to forward an SVC request across one or more groups in

a PNNI routing hierarchy. The PNNI term for the source route vector is designated

transit list (DTL). A DTL is a vector of information that defines a complete path from

the source node to the destination node across a peer group in the routing hierarchy.

A DTL is computed by the source node or first node in a peer group to receive an SVC
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request. Based on the source node’s topology database available, it computes a path to

the destination that will satisfy the QoS objectives of the request. Intermediate nodes

obtain the next hop in the DTL and forward the SVC request through the network.

A DTL is implemented as an information element (IE) which is sent in the PNNI

signaling SETUP message. The source node computes the DTL for the entire path to

the destination across the peer groups. One DTL is computed for every peer group.

While the source node provides an explicit DTL for its peer group, it gives the names

of the other peer groups it has to traverse. When the request reaches an ingress node

in new peer group, it removes the old DTL, and computes the new DTL to traverse

its peer group. When the request reaches the destination peer group, the ingress node

computes the route to the destination node.

2.6.2 Crankback and Alternate Routing

In PNNI, when finding the route to the destination, the route is computed using the

topology database the DTL generating node has at the time of the connection request.

In a big network the node’s topology database may not be up to date due to long

convergence times and propagation delays between the nodes. In such a case, it may

not be possible at an intermediate node in the path to forward the connection request

to the next hop node due to unavailability of bandwidth on the connecting link. The

node where the DTL is blocked sends a release message to the preceding node and

also includes an information element called the crankback IE. In the crankback IE it

specifies the reason for failure of the connection setup and the blocked link. The DTL

originator node, when it receives the release message with the crankback IE, eliminates

the node with the blocked link and tries to obtain an alternate route to the destination.

If it finds a route, then a fresh setup message with a new DTL is sent to the destination

node along the alternate path. If no alternate path is available then the call is released.

Crankback gives PNNI the flexibility to try alternate routes before giving up attempts

at connection setup. The maximum number of crankback tries allowed for a connection

attempt can be set as an attribute at individual nodes connected to calling hosts.
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2.7 Performance Measurement Tools for PNNI

The performance issues in PNNI are many. The peer group size within a network is

of particular interest. If the peer group grows bigger, then it would be very difficult to

maintain identical topology databases at all the nodes in the peer group. The factors

which could contribute to outdated topology information include the increased link

delays between the nodes, queueing delays at individual nodes, and inter-arrival time

of connection requests smaller than the time taken to distribute the topology messages

amongst all the nodes in the network. Also the call setup times could be affected by

long delays within the routing algorithms to obtain a path to the destination which

satisfies all the QoS requirements. The effect of the PNNI topology update messages

on call setup is crucial and should be monitored carefully. The factors affecting the

utilization of the network must be controlled. Any possible bottleneck link should be

avoided since it could significantly affect the call success rate. Different routing policies

in the network could be used to control the network bandwidth utilization and obtain

different call setup times. Some of the tools which are currently known include:

� ATM Network Emulator: This is a commercial product by Duet Technologies.

It is an emulation tool supporting the PNNI stack. It has a CAC algorithm that

resembles the equivalent bandwidth method. The current version supports a

single peer group and one-level hierarchy. This tool is mainly developed for the

interoperability testing with the ATM switch vendor’s PNNI implementation. It

does not support a logging mechanism for the research specific interests of PNNI.

� ProuST: This is a simulation tool, developed primarily by the Naval Research

Lab. It is supposed to be public domain software in future and has interfaces for

routing algorithms. At this time, since it is under development, it is not released

for public use. It is aimed at providing emulation capability, call generation capa-

bility, and multiple level hierarchical PNNI architecture by December 1998. Our

approach could substitute ProuST for Q.port.

� SRI’s simulation tool: SRI has developed a simulation tool for its internal use.
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This tool is supposed to have call generation and topology parameter setting

abilities. SRI is experimenting with QoS based routing policies.

� Siemens and Technical University of Munich: The networking group at Siemens

along with Technical University of Munich in Germany have built an emulation

tool which is used for PNNI engineering. It has ability to set PNNI architectural

variables, call generation, and built in CAC. It has no interface to routing algo-

rithms.

The simulation tool which KU has developed is a part of a comprehensive architecture

which supports a common interface for simulation, emulation and real ATM network

experimentation. Since the simulation shares about 98 % of the real ATM switch con-

trolling software, the results obtained are expected to closely match those obtained

using the real network experiments. This is the single most advantageous feature of

our tool over other simulation tools. The simulation has a user friendly input interface

to configure the network for simulation. It supports instrumentation of many perfor-

mance characteristics such as: initial convergence time which is the time taken by peer

group nodes to synchronize on topology information, the calls failed at source nodes

and at intermediate nodes, PNNI topology messages sent per node, the bandwidth

required by these messages, redundant topology messages generated, the link utiliza-

tion, the average number of hops taken by connection setups, call setup times, routing

algorithms, percentage call rejection, and percentage traffic-wise bandwidth rejection.

It also supports call arrival and duration distributions such as Poisson, uniform and

periodic distributions, a range of destinations to make calls to, or explicitly specified

destinations, the same host having traffic sources of different QoS requirements and

percentage shares of these differing traffics in the total calls generated by a host. These

features make it very convenient to generate real network traffic. This makes the sim-

ulation tool more comprehensive.
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Chapter 3

Implementation

In this chapter first the design and implementation details of the PNNI simulator will

be given. The additional Q.93B PNNI protocol information elements and their pro-

cessing explanation is included. A brief explanation of the newly added PNNI router

module is also given. Finally the host’s call generator abilities and then the mechanism

for collecting the performance evaluation logs will be explained.

3.1 Simulation Model

The Q.Port signaling software’s scheduling architecture was modified to provide the

simulator capability. In this architecture, all of the switch and host modules involved

in the simulation register with one single instance of a core-reactor class as shown in

the Figure 3.1. The functions the core reactor class offers are as follows.

� Registering and dispatching multiple timer events: The Reactor module holds

a pointer to the timer manager. All the modules associated in a switch or host

when request for registering a timer request the reactor through the schedule-

timer interface it provides. The reactor forwards these requests to the timer-

manager which it owns.

� Posting multiple Q.Port internal messages: The Reactor supports the posting of

the internal messaging between different Q.Port modules. When the Q.Port mod-

ules need to post messages, they call the post ticket interface of the reactor. The
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reactor forwards this to the ticket-dispatcher which it owns.

Since all the Q.Port modules of different switches now report to one common reactor

scheduler, Q.Port can support a single schedule oriented, discrete event simulator. In

Figure 3.1 a new class SimKernel is added to scheduled the events to either a specified

duration of time or until the simulation ends with no more events to be scheduled.

The SimKernel class maintains virtual time which is updated whenever a timer event

is scheduled. The ticket dispatcher is a class which schedules the tickets registered.

The tickets are scheduled events which are either the timer events or the inter Q.Port

module messaging events. The Input/Output (I/O) manager registers a ticket with

the ticket dispatcher for scheduling timer events and the I/O events. Since in the sim-

ulation there is no interprocess communication involved, the I/O manager is modified

to avoid checking for the input data from the other processes and all the I/O manager

tickets are used to service the simulation timer events. The modifications are done to

stop polling on the file descriptor changes using the UNIX select function during the

simulations. The timer events are scheduled by the timer manager, which calls the han-

dle timeout interface of the module which registered the timer. The message events are

handled by the the TicketDispatcher which calls the process interface of the message

ticket which was posted.

3.1.1 Simulation Kernel

A simulation kernel SimKernel is added which is used to schedule simulator events. It

interacts with the timer manager for scheduling timer events. It maintains virtual time

for the simulation. This virtual time is used by the other modules while registering new

timer events. The I/O Manager class is interfaced with the class SimKernel to schedule

timer events when the reactor is running in the simulation mode. The SimKernel ’s

service routine is used to schedule the timer events. It schedules the next event if

the next event’s scheduled virtual time is less than the duration of the simulation. It

updates the current time to the time the next event is supposed to be scheduled. The

pseudo code for the service routine is shown in Program 3.1.
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Program 3.1 Pseudo-code for the Simulation Kernel Service Routine

1 void service()
2 {
3 _next_sim_time = _timerManager.nextExpiration();
4 if(_next_sim_time <= _sim_stop_time)
5 {
6 _sim_time = _next_sim_time;
7 _timerManager.serviceNextEvent();
8 }
9 else
10 {
11 _stop_simulation = true;
12 _sim_time = _sim_stop_time;
13 }
14 }

3.1.2 Priority of Servicing

Two levels of priority are used for scheduling the events . They are,

� Priority 1: The events generated by inter Q.Port module messaging are assigned

level 1 priority which is the highest priority. The messaging between the Q.Port

modules Switch Call Control(SCC), PNNI Routing Service (PNNI RS), Static Router,

and the Fabric are modified to suit this priority.

� Priority 0: This is the low level priority assigned to the servicing of the timer

events.

With this priority setup, the tickets posted for messages are first serviced and then

the queue for timers is serviced. This helps in processing an incoming message com-

pletely through different protocol stacks. Timer interrupts are secondary to processing

a message in hand. There is provision for adding additional priorities if required.

3.1.3 Simulation of Link and Queueing Delays

The Simulation model includes simulation of links between the ports of nodes and

hosts. Simulation of link delays, queueing delays, and queue length is also included.

21



3.1.3.1 Simulation of Links Between Ports

The ATM Adaptation Layer 5 (AAL5) module of the Q.Port is the lowest part of the

signaling stack and represents the port which can be connected to the peer AAL5. This

module is modified for the simulator to know before-hand the object pointer of the peer

AAL5 object. To each AAL5, the peer AAL5 object pointer is specified during booting

up of the configuration. When data needs to be transferred to the peer AAL5, the

SendToPeerAal5 method is called passing the data to the peer entity. This connectivity

of links between simulator ports is labelled as pass thru link as shown in the Figure 3.1.

Figure 3.2 shows the stacks on ports of two different nodes. The Q.93B module passes

the data to the datalink Qsaal module, which after adding appropriate headers, passes

it to the AAL5 module. AAL5 module passes it to the peer AAL5 module by calling the

AcceptFromPeerAal function of the peer AAL5 module along with the packet buffer

pointer. The packet is subjected to adequate link delays and queuing delays before

being taken up for processing. The pseudo code for transferring data between two

ports is as given in 3.2. The name peerAal indicates the peer Aal5 pointer which is

set while configuring connectivity between the two Aal5 modules.

Q.93B Q.93B

Qsaal Qsaal

AAL5 AAL5

pass_thru

peerAal.AcceptFromPeerAal(buffer, length)

Figure 3.2: Q.93B port stack
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Program 3.2 Pseudo-code for the Pass Thru link between simulation links

1 void SendToPeerAal(char * data, int length)
2 {
3 if(_peerAal)
4 _peerAal.AcceptFromPeerAal(data, length);
5 }

3.1.3.2 LinkDelays and Queuing delays

The simulation model supports queuing of packets. These packets could be the Q.93b

signaling packets encoded within the Qsaal PDUs or PNNI Route Control Channel(RCC)

packets. The AAL5 class has been modified to support a queue length which could be

specified during configuration. Packets which arrive after the queue count exceeds the

queue length are dropped. This accounts for losses in due to packet buffering in ports.

The queuing delay on the packets is also supported. This is done by multiplying the

queue size in the switch’s ports at the time of arrival of this packet by the mean pro-

cessing delay which could include the protocol processing delay and variable routing

module delay. This processing delay can be configured. A measure of the processing

delay is obtained by measuring the average time taken over processing of a large num-

ber of switch events. The link delay is added to the queuing delay, making the total

delay before the packet is taken up for processing. This link delay is configurable and

the AAL5 module is modified to include this information. Hence when a packet comes

to the AAL5 module from the other side of the link these cumulative delays (Queuing

delay and Link Delay) are calculated and a timer is started. When the timer expires, the

AAL5 module takes up the packet for processing, giving it to the next stack in the pro-

tocol hierarchy. The pseudo code for including link and the Queuing delays is shown

in the Program 3.3

3.2 Q93B PNNI Stack and DTL Processing

In Q.93B module, a new Information element class called DTLElement is added. This

class provides the decoding and encoding abilities for the PNNI specific DTL Infor-
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Program 3.3 Pseudo-code for Queuing and link delays

1 void AcceptFromPeerAal(data, length)
2 {
3 if(_queueCount == _queueLength)
4 {
5 delete data;
6 }
7 else
8 {
9 delay = linkDelay + QCount*processingDelay;
10 startQtimer;
11 }
12 }
13 void QtimerExpired()
14 {
15 upperLayer.ProcessData(data, length);
16 // The upper layer modules could be Q.93b or PNNI RCC modules
17 }

mation element. The format of this information element is shown in Table 3.1. In

this format, length of designated transit list contents specifies the number of hops to

be followed to the destination. Current transit pointer indicates the offset of the cur-

rent node identifier in the list of the nodes. Logical node identifier gives the 22 byte

node identifier. The DTLElement class also provides functions to manipulate its data

structures uring processing of the information element in the setup message.

In the Q.93B module, another new class Q93B PNNI is added. This class provides

the Q.93b signaling stack support for PNNI signaling control channel communication

between the ports of two switches. This class provides the ability to decode the manda-

tory DTL element from the setup message and store the DTL element object thus cre-

ated in the setup message object which is provided to the switch call control for pro-

cessing. In the outgoing setup message, it ensures the presence of the DTL element.

It encodes this DTL element into the outgoing data stream. This class also takes care

of the presence of the connection identifier IE in the setup or call proceeding or the

connect messages. The connection identifier IE provides the information regarding

the VPI and VCI pair to be used on the link for the connection establishment. A brief
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8 7 6 5 4 3 2 1
1 Coding IE Instruction Field

ext standard
Length of designated transit list contents

Length of designated transit list contents(continue)
Current transit pointer

Current transit pointer(continued)
0 0 0 0 0 0 0 1

Logical node / Logical port indicator
Logical node identifier
Logical port identifier

Table 3.1: Designated transition List

explanation is given for terms master-node and slave-node before looking into the rule

to be followed for processing connection-identifier

Among two adjacent nodes in PNNI, the master-node is the one whose node iden-

tifier is numerically greater than the peer node’s node identifier. The slave-node is

the node whose node identifier is numerically less than its peer node’s identifier. This

information is obtained when the two nodes exchange hello messages through their

route control channels before exchanging topology messages.

The rule to be followed while sending the connection-identifier is that the master-

node is the node which allocates the connection identifier for the link between the two

nodes. The following events which are supported in the Q93B PNNI class ensure that

the above rule is satisfied.

If the master-node receives the setup message from the slave, then the setup mes-

sage does not include the connection-identifier. When the master node sends out call-

proceeding or the connect message to the slave in reply to the setup message, the con-

nection identifier is a mandatory element in the connect message if call-proceeding is

not sent before it. Otherwise if the call-proceeding message is sent, the connection-

identifier must be included in it.

If the slave-node obtains the setup message first, then the connection-identifier

must be present in it. When the slave-node sends the response messages call proceed-
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ing or the connect, the connection-identifier must be omitted.

3.3 Switch Call Control Support for PNNI

Changes have been made in the switch call control to accommodate the PNNI signaling

and the routing. The changes could be listed as follows:

1. Support is provided to indicate if the destination host is connected to this node

or not. This function compares the 13 byte destination ATM address with the 13

bytes of the node identifier. If they are the same, it is decided that destination

host is connected to the same switch and a request is sent for the router table

which stores the host’s port number.

2. If Condition 1 fails then the destination address is compared with this node’s

peer group identifier mask and if it succeeds, then it is decided that the destina-

tion is present in the same peer group represented by this switch but not present

on this switch. A request is sent to the PNNI routing module for seeking the

source route to the destination.

3. If Condition 2 fails, then the destination is in another peer group and the call is

terminated.

The routing in the switch call control is changed to seek the routing request in the

following way.

� If the setup message is from a peer PNNI node, then the request for routing is

sent to the newly implemented PNNI router. These are the parameters provided

to the PNNI router whenever a routing request is made to the PNNI routing

service.

– The destination address.

– The QoS requirements regarding PCR, SCR, CDV, CTD and CLR.

– The designated transition list.
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– Incoming port number

� If the setup is received from a peer host and destination host is connected to the

same switch, the request is sent to the router table. Otherwise the request is sent

to the PNNI routing service.

3.4 PNNI Routing Services (PNNI RS)

A new interface module called PNNI Routing Service is added in Q.Port. This inter-

face provides interaction between the PNNI specific dynamic routing service and the

Switch Call Control(SCC). It also provides interface to the AAL5 submodule for the

purpose of Routing Call Control Channels. PNNI RS has a server-client relationship

with the SCC. SCC is the client, requesting routing services from the server PNNI RS.

3.4.1 Interaction between PNNI RS and SCC

The message interaction between PNNI RS and SCC is as shown in the Figure 3.3

SCC PNNI ROUTING SERVICEQ93B

SETUP

ROUTE_REQ

ROUTE_RESP

RELEASE

RELEASE_BW

PNNI 

DYNAMIC

ROUTING

SERVICE.

Figure 3.3: Interaction between SCC and PNNI RS Modules

The messages are described below:
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� route req message: This message is a routing service request from the SCC to the

PNNI RS. There could be two categories of routing requests. They are:

– dtl request : This request is issued by the SCC when a setup message is

received from a host machine and the destination is not connected to this

switch. The PNNI RS will obtain the whole route to the destination which

satisfies the QoS, and then provides the DTL to the SCC.

– dtl parsing request : This request is issued by the SCC when a setup mes-

sage comes from a peer PNNI node which will have DTL in it. The PNNI

RS will check if the top of the DTL stack is this node itself. If so, it obtains

the output portnumber for the next hop.

� route resp message: This message is a response from the PNNI RS to a route

request message from the SCC. There could be five categories of responses in this

message which are:

– destination in same switch : This indicates that the request has been found

to satisfy QoS requirements for the input port so the call can be accepted. It

also indicates that the destination is in the same switch. When the SCC finds

this response, it requests the destination port from the local router table.

– call routed : This indicates that a path to the destination has been found and

the DTL is included for the path. It also provides the output portnumber to

which the SCC forwards the call.

– no bandwidth on incoming port : This indicates that the route request failed

due to unavailability of bandwidth on the incoming link and hence the call

cannot be routed.

– no bandwidth on outgoing port : This indicates that the there is no band-

width available on the outgoing port to support the requested bandwidth

and hence the call request is rejected.

– no route available : This indicates that no single path could be found which

satisfied all the QoS requirements all the way to the destination. Hence the

call request is rejected.
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� release bw message: This message is sent by the SCC when a release message is

obtained from one of the parties involved in the call. The PNNI RS, releases the

resources specified for this call and if required sends out topology messages to

the other nodes.

3.4.2 Interaction Between the PNNI RS and the AAL5 module

PNNI RS interacts with the AAL5 module for sending and receiving the PNNI RCC

messages. PNNI RCC messages use the VPI 0 and VCI 18. They carry the Hello FSM’s

and the Node Peer FSM’s packets.

Hello FSM: Hello FSM is the initial hand shake protocol between two PNNI nodes.

It runs when the physical link comes up.

� It obtains the peer group identifier of the peer node which helps to know if the

remote node is in the same peer group.

� It obtains the node identifier of the peer node.

� When it is synchronized with the above two items and knows that the peer node

also knows about its identity, it initiates the exchange of the topology information

between the two nodes, using the Node Peer FSM.

The Figure 3.4 shows the packet flow between two node’s Hello FSMs, the Node

Peer FSMs. It also shows the topology database where the exchanged topology infor-

mation is stored.

Node Peer FSM: This manages dynamic topology exchange information protocol

in PNNI. It is the core protocol upon which the PNNI concept is based. It exchanges

the following packets with the remote node:

� Database Summary packets (DS pkts): These are the first series of packets which

are exchanged. These packets give the summary of the topology database in a

node.

� Request Packets (REQ pkts): These are sent to request a set of topology elements

from the remote data base which were advertised in the DS pkts of the remote
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Figure 3.5: Messaging between PNNI RS and AAL5

node.

� PTSP packets (PTSP pkts): These are the topology information carrying packets.

They are sent out when a request is made by the peer node for specific topology

information or periodically when significant topology changes occur.

� Ack Packets (ACK pkts): These are the acknowledgements to the topology pack-

ets sent by the peer node.

The interface between the AAL5 and the PNNI RS module is shown in Figure 3.5

These messages are explained below.

� Linkup message: When the AAL5 module establishes the TCP connection with

the remote node, it sends the Linkup message to the PNNI service indicating that

the physical link is up and ready for data transfer.

� udata req: When the PNNI RS wants to send out any RCC packet stream to to the

remote node, it sends the udata req message to the remote node with a pointer

to the packet data stream.

� udata ind. When the AAL5 obtains packet data stream from the remote node, it

sends udata ind message to the PNNI RS.
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3.4.3 PNNI Routing Module’s Functionalities

The PNNI routing module is based on the PNNI routing software called ProuST de-

veloped by the the Naval Research Laboratory. This software, when interfaced with

the Q.Port signaling software, needed to be changed significantly first in order to get

the ProuST architecture fit over the Q.Port architecture and later to have the additional

functionalities to support PNNI single peer group experimentation. A summary of the

changes is explained here.

Part of the architectural changes included were discussed in the form of the PNNI

Routing service interface provided between the Q.Port modules SCC, AAL5 and the

PNNI routing modules in the Section 3.4. In addition to these changes, the timers in

the routing modules were changed to make use of the Q.Port supported timers. The

timer handling of the modules is changed to use the Q.Port style of timer handling.

All the modules were detached from the ProuST kernel support and were registered to

the Q.Port reactor scheduling and underlying passMT module. Most of the underlying

Design Pattern Frame Work of Proust software is retained for the intra-ProuST module

communication. In bringing up the PNNI routing module, some of the modules which

were redundant in case of the Q.Port architecture are eliminated. Important amongst

them are the Q93B signaling stack and associated information elements, queues, and

the modules simulating the links between switches. These are replaced by appropriate

Q.Port modules in the unified architecture. One of the important changes made was

in the routing of the data from the PNNI Routing Service to the Control modules of

the ProuST architecture. The complex inter-module routing facility which is present

in ProuST for provide the abilities a switch requires, is simplified to just providing the

routing service in the context of Q.Port.

The following additional functions were provided in the PNNI routing service.

� Convergence Time: Convergence time is the time taken by all the nodes in a peer

group to initially exchange the topology information and to be synchronized with

it. It helps to know about the arrival rates of the connection requests the network

could sustain sensibly. Also it could help in learning about the peer group size.

In the Database module of the PNNI routing architecture, support for finding the
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convergence time is implemented. All the nodes involved in the experimentation

are configured with the number of initial topology information elements present

in the peer group. When the topology exchange is started the time is noted. When

the database has all the topology information present in the peer group through

exchange of information with other nodes, the convergence time is noted. The

effective convergence time is calculated as the time it took for the last node in the

peer group to achieve convergence.

� Topology Update Messages: The topology update messages give the number of

topology messages sent by a node either during initialization or due to change

in topology significance or aging. The number of topology floods due either to

a significant change in topology information or to the process of aging is very

helpful in measuring the PNNI RCC overhead on the call setup times and the

blocking rate. In the Database module, the ability is provided to keep account

of total flooded topology information as it is from this database that the flooding

occurs.

� Utilization: The utilization is the amount of the link bandwidth utilized at a given

time. In the PNNI router module a facility is provided to request for utilization

periodically.

� Reorigination Ability: Reorigination is the flooding of the PNNI topology infor-

mation in a node either when there is a significant change in the topology infor-

mation or to prevent the aging of the element. An implementation of the reorig-

ination policy provided in the PNNI specification is supported. Also the ability

to specify the proportionality constant and the minimum threshold is provided.

These constants can be dynamically changed for experimentation purposes.

� Call-Packing and Load-Balancing: Call packing is a policy used to select a next

hop link amongst multiple alternative links as the link which has the minimum

bandwidth. Load-balancing is a policy used to select a next hop link which has

the maximum bandwidth at that time amongst a set of available links, thus bal-

ancing the load. Ability to specify these policies and run the specified policies is
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implemented.

� Selective routing policy: Using Dijkstra’s shortest path algorithm, the ability to

specify the cost function is provided.

The three policies based on the cost functions are,

– minimum hop policy: This is a distance vector policy where all the links

have the same cost associated with them.

– maximum bandwidth policy: This is a policy where the links are provided

with costs based on the amount of available bandwidth they have. The

higher the available bandwidth, the lower is the cost to traverse the link.

– minimum time policy: This is a policy where the links have cost based on

the link delay. The smaller the link delay the lower is the cost to traverse the

link.

3.5 Results and Logging Format

RESULTS

HOST RECORD
POOL

NODE RECORD
POOL

HOST
RECORD

HOST
RECORD

NODE
RECORD

NODE
RECORD

HOST HOST NODE NODE

CONFIGURATION BOOTUP PROGRAM

PRINT

Figure 3.6: Logging mechanism for results

For logging the results, a hierarchical mechanism of storing the objects is followed.
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The configuration boot up program has the main results object of the Results class.

This class has pools of objects of two other classes, which are,

� Host-Call-Record : which is used to store the host related call generation logs. A

unique HostCallRecord for a host also has an array of call records. The pseudo

code of this log record is given in Program 3.4. Each call record for a call has

details to show the status of the call which could be failed or successful, the type

of call(CBR, ABR, VBR, UBR), the start time , the setup time, the bandwidth used

and the cause of failure if the call failed.

� Node-Record : The NodeCallRecord is unique to a node and it stores a node’s

logs. The pseudo code of this log record is given in Program 3.5. The hops

stores the average number of hops taken by calls generated at this node. The

route computation time indicates the average time taken in running routing al-

gorithms. The utilization provides the utilization logs of the network at different

times. The convergence gives the time taken for achieving convergence at this

node. The floods provide the number of topology floods that were generated.

Program 3.4 Pseudo code for the host call record

1 class HostCallRecord
2 {
3 array of CallRecords;
4 }
1 class CallRecord
2 {
3 StateOfCall{ success, failure};
4 Calltype { cbr, rtvbr, nrtvbr, abr, ubr};
5 startTime;
6 setupTime;
7 call bandwidth request;
8 call failure cause;
9 }

As shown in Figure 3.6 the boot up program has an object pointer to a unique re-

sults object. When it creates the individual hosts, it creates a HostCallRecords object

and passes it to the corresponding host. When it creates the individual nodes, it creates
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Program 3.5 Pseudo code for the node call record

1 class NodeRecord
2 {
3 number of hops;
4 route computation time;
5 link utilization;
6 convergence time;
7 number of floods;
8 }

a NodeRecords object and passes it to the corresponding node. During the experimen-

tation, each of the hosts and nodes collect the logs they created into their respective

logging objects. When the experimentation is complete, the boot-up program which

has the object pointer to all the host’s and node’s logging records, prints them for the

user.

3.6 User Input Interface

The simulator is provided with a user input script interface. Using this script interface,

the network of interest could be specified along with the experimentation logs to be

collected. The design for this utility is as shown in Figure 3.7

When the user specifies the network, a PNNI parser is used to parse the input and

store the input data into a data structure. There may be some default parameters left

out by the user and these are filled in the complete user input function. When the input

configuration is complete, the data structure is given to a simulation boot-up program,

which sets up the simulation.

3.7 Call Generator Changes

The simulator uses a Call Generator module to make call connection requests with the

nodes. The call generator is designed to request the connections in specified arrival

and duration distributions. The call generator parameters can be specified in a user

input script during experimentation. Thus the call generator is a very comprehensive
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USER INPUT

SCRIPT

PNNI 

PARSER

SIMULATION

CompleteUserInput()

RUN 

SIMULATION

DisplayResults()

Figure 3.7: Design of common interface to simulator and emulator

and is extended to generate realistic traffic in a big ATM network. The call generator is

provided with these capabilities.

The following call arrival distributions are supported:

� Poisson Distribution.

� Uniform Distribution.

� Periodic Distribution.

The following additional call arrival types are supported:

� Tear Down type: In this type of calls, when a call connection is established, it is

immediately torn down and the the next call is attempted.

� Burst Type: In this type calls, when a call connection is established, immediately

next call is attempted.

The following call duration distributions are supported:

� Poisson distribution.
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� Uniform distribution.

� Periodic distribution.

The following call traffic types are supported:

� CBR: Constant Bit Rate.

� ABR: Available Bit Rate.

� RTVBR: Real time Variable Bit Rate.

� NRTVBR: Non Real time Variable bit rate.

� UBR: Unspecified bit rate.

The following QoS parameters for connection request are supported:

� pcr : peak cell rate.

� scr : sustainable cell rate.

� ctd : Minimum cell transfer delay.

� cdv : cell delay variation.

� clr : cell loss ratio.

The call connections can be made to the following types of destinations.

� A single specified destination. Ex: destination1

� A range of destinations. Ex: destination1 to desitination10.

� Explicitly specified destinations. Ex: destination1 destination2 destination3

When the calls are generated to more than one destination, the destinations are selected

uniformally over the available destinations.

The call generator also supports multiple traffic sources with different QoS require-

ments being part of the total number of the calls generated. Here QoS requirements are

specified for individual sources. The number of calls generated of each traffic can be
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specified as percent share of total calls generated. When multiple traffic sources are

available, the calls are made with a single arrival distribution, while the duration dis-

tribution for each of the traffic sources can be different.

39



Chapter 4

Evaluation

This chapter evaluates the work done to study the performance of a single peer group

PNNI protocol. It also evaluates the capacity of the simulator to simulate large scale

networks. The evaluation is done in the following 2 sections.

� Experiments with abstract topologies: Abstract topologies like ring, chain and

the mesh topologies are used in these experiments. The experiments regarding

the basic topology convergence time with these topologies is explained.

� Experiments with realistic topologies: Realistic edge-core topologies are used

in these experiments. Experiments regarding, PNNI proportional multiplier for

significant topology information change, call setup times, utilization, and topol-

ogy scaling are explained. The simulator’s performance study is also explained

in this section.

4.1 Experiments With Abstract Topologies

Sample chain, ring and the mesh topologies are shown in Figure 4.1. Some of the

features of these topologies are as follows: The chain topology has a higher diameter

than the ring topology. Here note that diameter is the maximum of the minimum

distances between all the two node pairs in the topology. Hence for the chain topology

shown in the figure, the diameter is 5 and for the ring topology it is 3. For the 9

node mesh topology the diameter is 4. The mesh topology has nodes connected with
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 6 node ring topology

 6 node chain topology

 9  node mesh topology

Figure 4.1: Chain, Ring and Mesh topologies

different number of links with maximum number of links connected to a node being

4 and minimum 2. The experiments on convergence time and the topology update

messages generated for each of the topologies is explained in this section.

4.1.1 Topology Convergence Time

The topology convergence time is the time it takes for all the nodes in the network to

synchronize with initial topology information generated by each of the participating

nodes. The initial topology information generated by each node includes:

� Nodal Information: which gives information about the node identifier and peer

group of the node along with some node specific characteristics such as leader-

ship priority and others.

� Horizontal Link Information: This contains link information regarding band-

width, delay, and others. Each node advertises all the links to neighboring nodes.

These primary topology information elements are sufficient for routing a call connec-

tion request to any other node in the peer group.
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Convergence time is an important performance metric as it lets us know how quickly

topology information which is flooded could get through the different nodes in the net-

work and help all the nodes in the network have a common view of the network. The

convergence time depends upon the following factors:

� The size of the network.

� The connectivity density of the links between the nodes, which is number of links

between the nodes in a network.

� The processing capabilities of the nodes in the network.

� The link delay between the nodes in the network.

Following sections describe the convergence time experiments with each of the above

parameters.

4.1.1.1 Convergence Time With Increasing Number of Nodes
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Figure 4.2: Topology Convergence time related plots

Convergence time with increasing number of nodes for the ring, chain and the

mesh topologies is as shown in the Figure 4.2(a). With each topology, five sizes of
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networks with the number of nodes ranging between 9 and 100 are used. From the

figure we can see that the mesh topology has a convergence time which is very high

compared to the other two topologies. This is mainly because of the greater connec-

tivity between nodes in this topology than the other two. Also we can see that the

mesh topology has an exponential rise in convergence time when the number of nodes

increase. This is because in larger sized mesh networks most of the nodes will have

connectivity to four other nodes and whenever topology information is obtained from

one node, it is flooded to all the other nodes. This creates an extremely high number of

redundant topology messages which greatly increases the topology convergence time.

Thus the mesh topology is not a realistic topology with bigger networks. The conver-

gence times of the chain and ring topologies show that they are linearly increasing with

the number of nodes. The ring topology has a slightly smaller convergence time than

the chain topology because of the fact that the maximum shortest distance between any

two nodes in the ring network is half that of the chain topology. This helps in reducing

the convergence time in topology message flooding.

4.1.1.2 Differing Convergence Times Among Nodes

Different nodes in a topology could converge to the correct view of the network at

different times. Though this could be unavoidable because of a perticular network

topology, a large difference between the convergence times of the node which attends

it first and the one which attends it last in the network is undesirable. This is because

it leads to an inconsistant view of the network amongst the nodes, affecting the events

of the network in terms of call success rate, call setup times and network utilization.

Figure 4.2(b) shows a plot of differing convergence time with increasing number of

nodes for the mesh, chain, and ring topology. Note that differing convergence time

is the difference between the convergence time of the last node which achieved it and

the one which achieved it the first in the network. For the mesh topology, we can see

that the difference in convergence is about 50 percent of the highest convergence time.

At small convergence times this difference could be affordable, but as the convergence

time gets higher, the difference could be very perceptible in terms of asymmetry in
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network view. For example, in the mesh topology with 100 nodes, the difference in

convergence time is about 3 seconds. If the average call interarrival time of the network

is less than 3 seconds, then the calls could be routed or rejected by the source nodes

with outdated topology information leading to inefficient use of network resources

which is undesirable. If we compare the ring and chain topology in the Figure 4.2(b) it

is observed that the ring topology will form a better PNNI network topology than the

chain network, not only because its convergence time is small, but also the difference

in the convergence time amongst the participating nodes is less.

4.1.1.3 Convergence Time With Varying Connectivity Density

The convergence time also increases with the connectivity density between the nodes.

The connectivity density experiments were conducted with one, two, and three links

between any two nodes in the networks. Mesh and ring topologies, both with 36 nodes,

were used for the experiments. Figure 4.3(a) shows that the for mesh and ring topolo-

gies the convergence time increased linearly with the increasing connectivity densities.

Since for each link there are two topology messages originated, one by each side of the

link, adding new links causes additional topology messages in the network and hence

increased convergence time. It is undesirable to have a higher convergence time for

this sake. This shows that it would be better to have fewer links with more bandwidth

than the other way around. This is the concept which is used in multiple peer group

PNNI by aggregating links between the peer groups to reduce the topology informa-

tion flooding.

4.1.1.4 Convergence Time With Varying Processing Delays

This is an attempt to see how the convergence time could be affected with different

message processing delays for the nodes. Processing delays of 2ms, 6ms and 10ms

were tried on a chain topology of 55 nodes. Figure 4.3(b) shows that we get a linear rise

in convergence time with the increasing processing delays. This is an interesting issue

as in a network we could have nodes with different processing delays. Some network

providers offer two types of switches which differ in processor capabilities by a factor
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of five. If we have such switches in the same network, then the convergence times they

achieve could differ and lead to some inconsistencies in terms of the network behavior.

Hence it is better to avoid having two different nodes exposed to similar network traffic

with differing processing capabilities. At the same time, a core node supporting many

edge nodes could benefit form higher processing capability.

4.1.1.5 Convergence Time with Varying Link Delays

The convergence time changes with increasing link delays. Link delays of 8, 16 and 26

ms were tried between the links in a 55 node chain topology. Figure 4.3(c) shows that

the convergence time increases linearly with increasing link delay. Bigger link delays

signify bigger networks and so the network should be carefully designed to limit the

peer group size when convergence times become large.

4.1.2 Topology Updates With Different Network Topologies

The simulation tool can be instrumented to log the number of PNNI topology update

messages sent by each node during topology synchronization. Figure 4.4(a) shows the

topology update messages for the ring, chain, and the mesh topologies during conver-

gence. From the figure it is apparent that the update messages increase linearly for the

ring and chain topologies with increasing nodes. For the mesh topology, the number of

update messages becomes extremely high with the increasing nodes. This is because

the redundancy of flooded messages increases in the mesh topology where most of

the nodes are connected to four other nodes. In ring and chain topology, each node

is connected to only two other nodes. In the mesh topology, nodes flood information

amongst themselves, increasing the redundantly flooded messages. This can be seen

in Figure 4.4(b). For the mesh topology, it is observed that more than half of the mes-

sages are redundant messages. More interconnectivity between nodes helps reduce

the convergence time of the network. But having half of the messages being redun-

dantly flooded, the performance of a mesh network decreases with increasing network

size. The average link bandwidth consumed during topology convergence is shown

in 4.4(c). It can be observed from the figure that the ring topology has a higher band-
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Figure 4.4: Topology message flooding related plots
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width consumption than the mesh topology. This is because in the ring topology the

links to nodes ratio is equal, which is not true of the mesh topology. In the mesh topol-

ogy, because of higher connectivity density, more links share the topology messages

reducing the per link bandwidth. The ring topology has higher topology bandwidth

per link than the chain topology because of the redundant messages. This is reflected

in a smaller convergence time for the ring topology than the chain topology. In a chain

topology there are no wasted messages. Figure 4.4(b) shows the redundant messages

for the ring topology. In the ring topology we can see that the redundant messages are

a very small fraction of the total topology messages. But the ring topology performs

better compared to chain topology by reducing the convergence time to half that of the

chain topology.

4.2 Experiments With Realistic Topologies

The popular Edge-Core topology which is mostly used in setting up a private ATM net-

work is used. The model topology used is explained in section 4.2.1. The experiments

with this topology are based on the following studies:

� The study regarding proportionality multiplier which is used to calculate the

significant changes in the topology information before flooding them.

� Link utilization improvement study.

� Different routing policy study.

� The performance of the PNNI protocol with the expanding networks.

� Performance of the simulator.

4.2.1 Topology description

For experimentation purposes an edge-core topology of 45 nodes is considered as

shown in Figure 4.5. This will be labelled as the Model topology. In this topology, core

nodes are connected to other core nodes. Each core node connects to 2 edge nodes.
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Each edge node connects to a host which generates the calls. Depending upon the den-

sity of connectivity of the core nodes with the other core nodes, they are divided into

three categories.

� A Large range node which connects to other larger nodes to support the long

distance traffic.

� A middle range node which connects to other middle range nodes to support

medium range traffic.

� A small range node which depends upon the adjacent long and the middle range

nodes for long and medium range traffic.

These three categories of nodes are identified by the letter L for Large range node, M

for Middle range node, and S for small range node. The edge nodes are denoted with

the letter E and the hosts are denoted with the letter H. In the topology each of the core

nodes is connected to 2 edge nodes and each edge node is connected to a host node. In

the figure, multiple edge nodes and hosts are avoided for simplicity. The numbers on

each of the links specify the link delays in milliseconds.

The link delays between core nodes are chosen so that large scale nodes are pre-

ferred for long distance connections and middle scale nodes for middle distance con-

nections, though it may not happen this way necessarily depending upon the traffic

and network conditions. The topology supports a maximum round trip time of about

45 milliseconds. The link bandwidth between different nodes and hosts is shown in

Link bandwidth(Mbps)
core to core 155
edge to core 2000
edge to host 2000

Table 4.1: Link bandwidths for different links

The host to edge node and the edge node to core node link bandwidths are kept

at very high values to avoid bottleneck bandwidths at these links and thus helping

to exploit the core bandwidth in the network. Note that the bandwidth in the links
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between edge node and core nodes and the links between the edge node and a host

is chosen to be very high which is not realistic, but it helps avoiding congestion at

the edge itself which could have limited the scope of the this experimentation to the

edge of the network. The call generation related arrival distributions, the duration

distributions and QoS parameters for the calls are given in Table 4.2. Multiple traffic

types are used during call generations to ensure a variety in bandwidth requirements.

All the hosts generate calls to all the other hosts in the network with the destinations

being selected in uniform distribution from the whole range of the hosts. All the hosts

use different random number seeds to generate the call connection requests, select the

destinations and select the call duration times, ensuring different traffic patterns from

different hosts. The total number of calls generated per experimentation are about 6000

calls with different call arrival rates with Poisson mean of 5sec and 2sec for each host.

This gets the average network call arrival rates of 6 and 15 calls/sec respectively. These

measures and capabilities help simulate a traffic which is close to that in a real ATM

network. These parameters are used with all the experiments under this section.

SOURCE BANDWIDTH DURATION(sec) PERCENTAGE OF CALLS
CBR1 2Mbps uniform[10, 40] 40
CBR2 4Mbps uniform[20, 50] 40
CBR3 8Mbps fixed 50 20

Table 4.2: Call sources and QoS requirements

4.3 Call Generation Experiments Related To Proportional Mul-

tiplier

The Proportional multiplier is a parameter which is used to determine the significance

of change of link bandwidth with respect to the previously available bandwidth on

the link. It helps in obtaining a lower and higher bound for the next available band-

width. If the new call request or the released call, forces the link available bandwidth

to cross any of the two bounds, the change is considered significant and the horizontal
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link information is flooded amongst the other nodes. The algorithm for finding the

significance is given in PNNI specification [3]

4.3.1 PNNI Topology Update Messages

Figure 4.6 shows the PNNI topology update messages generated at different core nodes

in the network. From the figure it can be seen that the maximum number of messages

are generated in the large range core nodes and next in the middle range nodes and fi-

nally in the small range nodes. The wasted messages generated are also shown respec-

tively at each of the nodes. This confirms that the traffic pattern in the large, middle

range, and the small range nodes is on the expected lines.
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Figure 4.6: Topology update messages
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4.3.2 PNNI Topology Messages With the Different Proportional Multiplier

Values

Proportional multiplier(prop mult) values of 25, 50 and 75 are used to calculate the sig-

nificant changes in the topology information. Figure 4.7(a) shows the total topology

flood messages generated. We can see that with the decreasing proportionality multi-

plier, we have increasing numbers of topology messages. At prop mult of 25 we can

see three times more messages generated than with the prop mult of 75. This is because

of the lower significance of change of information crieteria for flooding the topology

information at a lower proportional multiplier. More updates will lead to frequent con-

vergence amongst the nodes in the network and this is helpful if the inter-call arrival

time is less than the time it takes topology information originated in a node to reach

all the other nodes in the network. Figure 4.7(a) also shows the topology updates

generated at a Poisson mean of 2sec per host. More topology updates are observed

here because at 2sec/call, with 30 hosts, the average call arrival rate for the network is

around 15calls/sec and this results in some of the core links getting fully utilized dur-

ing high traffic conditions and resulting in increased floods. Note that when the links

get utilized to a higher extent, a small change in link bandwidth leads to a significance

change, resulting in flooding of the topology information.

Figure 4.7(b) shows the average topology updates per call with respect to different

prop mult values. We can observe that, as expected with a lesser prop mult, value,

more updates per call are generated than at a higher prop mult value. Also, with a

mean Poisson call arrival of two we find slightly more updates per call than at Poisson

mean of five, which is as expected. More topology updates per call could lead to higher

call setup times.

4.3.2.1 Average Call Setup Times

Figure 4.8(a) shows the average call setup times with three different values for prop mult.

There are two plots showing the mean Poisson call arrivals means at 5sec and 2 sec per

host. While comparing the call-setup times at call arrival rates with a Poisson mean

of 2sec, for different values of prop mult we can see that at prop mult = 25 we get the
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Figure 4.7: Topology message flooding related plots in Model topology

highest average call setup time of about 120ms compared to the lowest average call

setup time of 90ms for the prop mult = 75. This is because of the larger number of

topology updates generated with prop mult 25 than with prop mult 75, affecting the

call-setup times. When comparing call setup times at different call arrival rates, we

can see that with a Poisson mean of 5sec the call setup times scale down to about 50%

of the setup times at Poisson mean of 2sec. This is because of the cumulative effect of

increased interleaving among the calls requests, and also due to the resultant topology

floods generated.

4.3.2.2 Failed Calls Amongst the Calls Generated

The type of failed calls will let us know if there is a convergent view in the network.

Failed calls are distinguished as:

� Source node failed calls( SFCs): These are the calls which failed at the source

node itself due to non-availability of the route which satisfies the bandwidth re-

quirements of the call.
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� Intermediate node failed calls(IFCs): These are the calls which failed at an inter-

mediate node due to non-availability of the bandwidth for the call.

This is an important distinction because a larger percentage of SFCs in the failed calls

indicates that the nodes have converged so that the source node knows the unavail-

ability of the bandwidth for the call. Larger percentage of IFCs in the calls indicates

non convergence, as the source nodes accept the call and send it to a destination only

to have an intermediate node reject it. This is an important metric to limit the network

size for a single peer group. Figure 4.8(b) shows the failed calls in the experimentation

with regards to the Poisson arrival mean of 2 sec per host. From the figure, it can be

seen that about 90% of the failed calls are SFCs. This indicates that this topology of 45

nodes is convergent and can be used for a single peer group network.
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Figure 4.8: Call setup time and Call failure plots

4.3.2.3 Bandwidth Rejection of The Calls

With the simulation tool, we can also log the amount of the bandwidth rejected. Per-

centage bandwidth rejected could be different from the percentage of rejected as calls

could request different bandwidths. The call bandwidth rejected is shown in Figure
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4.9(a). From the figure it is observed that at Poisson arrival rates of 2sec per host about

64 % of the bandwidth is rejected at a prop mult of 75. This is because there were about

15 bottleneck links which were occupied to the full bandwidth during some time or

other during the simulation. The percentage call rejection is shown in Figure 4.9(b).

From the experiments, it is observed that using prop mult at 25, though the network

creates more topology messages, it maintains better synchronization because of the

quick convergence. Hence, 25 is a better suited value for prop mult. Using the value of

25 for prop mult has a higher value of average call setup time, but better percent call

success.
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Figure 4.9: Call Rejection and Bandwidth Rejection Plots

4.4 Improvement In Percent Call Success Rate

Figure 4.10(a) shows the average utilization on some of the links. We can see that

the links connecting the short range and long range nodes are more utilized than any

other links. The links between the long range to long range nodes are the least utilized.

When the simulations were run with a call arrival rate with a Poisson mean of 5sec
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it was found that about 20 links which are mainly connecting the short to long range

nodes with delay of 3ms(refer to Figure 4.5), connecting the short to middle range

nodes with delay of 5ms, or connecting the long to middle range nodes with delays of

4ms were found to be fully utilized at sometime during the simulations, causing call

rejections. This was producing a call success rate of about 70 % . Then, in the next

run of the simulation these identified bottleneck links were given a bandwidth of oc12

instead of oc3. With the increased bandwidth, a 100 % call success rate was achieved

as shown in Figure 4.10(b).
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Figure 4.10: Utilization and Call success improvement

4.5 Routing with Different Routing Policies

Using the simulation tool, different routing policies can be selected to route a call. The

experiments were run for 15000 calls with Poisson arrival mean of 5sec per host. The

following policies were used.

� minimum time: Link delay is used as the cost function in calculating the route.

The higher the link delay, the higher the cost.
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� maximum bandwidth : Maximum available bandwidth is used as the cost func-

tion. The higher the bandwidth the lesser the cost.

� minimum hops: Minimum available bandwidth is used as the cost function. All

the links are allocated a fixed value of 1 for the cost of the link.

� minimum bandwidth : Minimum bandwidth is used as a cost function. The

lesser the available bandwidth, the lesser the cost.

Figure 4.11 shows the Call success rates in the policies used. The minimum-time

and the maximum bandwidth policies performed the best with about 90% call suc-

cess. Minimum-hop policy and the minimum-bandwidth policies didn’t perform well.

The minimum- hop policy performs badly because it always selects the same shortest

path which could lead creating a bottleneck link. Minimum-bandwidth performs the

worst with 70 % call success.
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4.6 The Performance of the PNNI Protocol with Expanding Net-

works

To compare the performance of the single peer group PNNI network with an expand-

ing network size, three different sizes of core edge network topology are chosen. They

are of the sizes:

� 12 nodes: 4 core, 8 edge nodes, 8 hosts.

� 45 nodes: 15 core, 30 edge nodes, and 30 hosts.

� 120 nodes: 40 core, 80 edge nodes, and 80 hosts.

Figure 4.12(a) shows the average number of hops of a connection with respect to the

total nodes. The average hops in a 45 node network is about 4 hops and that for a 120

node network is about 5.5. This shows that though the networks get bigger, they are

interconnected in such a way that the average number of hops does not increase lin-

early, thus reducing the call setup time. For the edge core topology tested, the average

number of hops obtained seem appropriate. Figure 4.12(b) shows the call setup time.

This shows the tendency of a 120 node network to have larger setup times.

Figure 4.13(a) shows the percentage of the calls failed in the intermediate hops

in the network. There is a marked difference between the 120 node topology and the

other two. In the 120 node topology, about 70 percent of the failed calls are failing at the

intermediate nodes indicating a non-convergence amongst the nodes. A convergence

time for the 120 node network is shown in the Figure 4.13(b). The convergence time

of about 8 secondsconfirms the fact that it takes longer for the network to converge the

with the topology information. At Poisson arrival rates of 5 sec per host it could gener-

ate many topology elements resulting in continuously changing the network topology

information. Thus a 120 node network seems to be unsuitable for a single peer group

topology. This is a very important result in terms of deciding the topology size.

Figure 4.14(a) shows the average route computation time for the different net-

works. It is seen that in 12 and 45 node networks, the route computation time makes
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up a small part of the call setup time. Whereas in 120 node network, the route compu-

tation time is about 120ms - comparable to the call setup time. This is due to the time

required to cull through a graph of about 120 nodes and all the associated links. This

could be easily avoided by providing smaller peer group sizes. This is another reason

for believeing that a 120 node network is not suitable for a single peer group.

4.7 Performance of Simulator

The Figure 4.14(b) shows the slow down factor of the simulation at 12, 45 and 120

nodes. While at 12 nodes, the simulation runs faster than the real time, it slows down

by about four times at 45 nodes and about 35 times at 120 nodes. Slow down with the

larger networks is due to the size of the simulation network itself. Another important

reason for slowing down of the simulation is because of the increased PNNI topology

updates in bigger networks. These topology updates give much smaller simulation

time increment though a lot of them are processed. Considering the slow down factor

of about 35 for a network of about 120 nodes is supposed to be good, we can simulate

such a network.
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Chapter 5

Conclusions and Future Work

The simulation tool which is developed provides a reliable platform for performance

evaluation of the PNNI protocol. Since the tool is based on the real ATM switch soft-

ware, the findings of the simulations are mostly assumption free. The user interface

helps user provide minimum required inputs to setup a topology and run the simula-

tion. From the experimentation on abstract topologies like the ring, chain and the mesh

topologies, we tested some of the known facts to check the simulations for correctness.

As expected the chain topology converged faster than the ring topology and the mesh

topology had the highest convergence time. The redundant topology messages also

showed that though they are result of increased cross connectivity for enabling faster

convergence, they could increase the processing load on the nodes, downgrading their

performance. The PNNI topology message bandwidth per link showed us that the

ring topology had higher bandwidth consumption per link than the mesh and chain

topologies. This is because when compared to the mesh topology, the ring topology

has smaller link to node ratio increasing the topology message overhead per each link.

When compared with the chain topology, in the ring topology the links carried addi-

tional redundant messages increasing the bandwidth requirement.

For the real networks the edge-core topology was chosen, as it is the most widely

used network topology. The connectivity between the nodes were chosen to carefully

distribute the traffic. Poisson arrival rates at each of the hosts, with calls generated to

all other destination hosts in the network created the real network traffic scenario. With
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45 node network, experiments were conducted with the PNNI parameter affecting the

significant change in the bandwidth, the proportional multiplier(prop mult) fixed at

25, 50 and 75. It was found that with prop mult 25, though the call setup times were

a little higher,it provided the best call success rates. The prop mult with 75 performed

the worst. Hence the prop mult value should be decided based on the call connec-

tion bandwidth requirement, topology size and call arrival rates. For our edge-core

network topology of 45 nodes, the prop mult value 25 seemed to be most suitable.

The experiments also showed that the bottleneck links can be identified and elimi-

nated resulting in better call success rates. Using different cost considerations for links

in the route computation we obtained varied performance regarding percentage call

success. The minimum time and maximum bandwidth costs performed better than

the minimum hop and minimum bandwidth costs.

By distinguishing the failed calls as source failed calls(SFCs) and the intermediate

failed calls(IFCs) we could best distinguish the performance of an expanding network.

A higher number of IFCs indicates poor convergence of the network as in these cases,

the source nodes forward the connection request assuming bandwidth availability all

along the entire path, only to be rejected later at an intermediate node. In 12 and

45 node, network we find majority of the calls failed being SFCs where as in 120 node

network we find them to be IFCs. Hence in 120 node network, the nodes, do not posses

a common view of the network making it unsuitable to be a single peer group.

Finally the simulator showed the capability to run simulations of a network of 120

nodes in a realistic edge-core network. The simulations seemed to be slower at higher

network sizes. This is mainly because, of the increased PNNI topology messages which

increase with more nodes in a network and they provide very less increase in the sim-

ulation time.

5.1 Future Work

The following are the issues for future consideration:

� Crank-back and Multiple peer group implementation, for performance evalua-

63



tion of multiple peer group PNNI.

� Validating the simulation experiments with the emulations, which are run in real

time speed.

� Plugging in Different Routing algorithms: for example a price based routing al-

gorithm.

� Pre computed paths at periodic intervals help reduce call setup times.

� Different topology aggregation schemes in the multiple peer group implementa-

tion.
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